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The game problem is considered of taking a controlled motion onto a given set. 
It is assumed that the players’ controls are subject to integral constraints. The 
first player’s extremal strategy is described, forming a feedback control. It is 
shown that under the conditions of absorption stability the extremal strategy gua- 
rantees the termination of the pursuit at the instant of program absorption. A 
modification is suggested of the extremal strategies, described in [l, 21, in diff- 

erential games with constraints on the instantaneous values of the players’ controls. 
This paper is closely related to @ - 61. 

1. Suppose that the motion of a controlled system is described by the differential 
equation 

dx/dt=A(t)x+B(t)u-C((t)v, x[t,]=x, (1.1) 

Here 2 = {xi, x2? . . . . x,) is the n-dimensional phase vector of the system; u, u 
are controls of dimension r; A (t), B (t), C (t) are matrices of corresponding dimens- 

ions, depending continuously on t . The realizations u[t], u [t] of the controls are sub- 

ject odt,, oo)to the conditions 

~ll~[51/j2&<IL2 [hl, ~~~~LEIi~2~E<v2~tol (1.2) 
IQ lo 

Here p It,], V [toI are constraints on the control resources. We assume further that 
variations of the quantities p [t], v [ tl are determined by the expendable resources 

t+‘?. 

v2 [t + Al = v2 [tl - s 110 [El 11” 6 
t 

With these variations we associate the differential equations 

dp2/dt = - 1) u [tl r, &a/& = - 11 u [tllj2 (1.3) 

Thus, system (1.1) with constraints (1.2) has been associated with the system of differ- 
ential equations (l.l), (1.3) with the initial conditions 

p” [toI = po2, v2 it,1 = vo2, x [t,l .= x0., 

Motion is considered in fi~l+~ an (n + 2))dimensional Euclidean space of points 

p = {l/P, l/V2 31, z.,, . . . . LX,,}. The first player’s problem is to choose a control 

Id 
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u [t] so as to lead the point p [tl onto a set A!*, where M* = {lr > Cl, Y > 0, 
fig}. Here &l is a given bounded convex set from R". By choosing v [tl the second 

player tries to prevent the point p [tl from going onto set M*. It is reckoned that at 

the instant t the players know the position (t, p [tl) but do not know the control chosen 

by the opponent at the given and at the next instants. 

We consider the problem facing the next player: to construct a control U, (t, p) such 

that, for any admissible control u (t, p) it ensures that the point p [t] is led onto M* 

at a certain instant t = l?.The definition of the class of admissible controls and of the 

solutions of system (1. l), (1.3) corresponding to them is given below. We present auxi- 

liary statements which will be used in the proof of the fundamental theorem contained 

in Sect. 4. 

Definition 1.1. Every vector-valued function u (E) (V (g)) with values of the 

vector u (Q (V (ZJ) from RP, satisfying condition (1.2), is called the first (second) 

player’s program control admissible for the point p [t,] = {pIt,l, Y It,], z[t,l}. 

By W (t, 6) we denote the set of all points p = {p, Y, r} possessing the following 

property: for any program controlv (5) (t < E < fi),admissible for point p, we can 

find a program control u (E) (t < E < 6) of the first player, admissible for point p, 

such that the pair u (E), v (E) takes the system (1. l), (1.3) from the state pit]= p 

into a certain state p[6] such that p[61 E M*. It is not difficult to verify that the in- 

clusion p E W (t, 6) is equivalent to the following inequality (for example, see [ 1, 

21): 
f'(l; 4 6) P - P-iv(~)<0 for nZ// = 1 

Here, p_~ (I) = max q’,! is the suppori function for the set - M, the prime denotes 
QE-M 

transposition, I is a vector of space R”, 

f (I; t, 6) = { - PI (1; t, 6), Ps (1; t, 6), - l’X[fi, tlj 

is a vector of space R"+'. We assume here that the tollowing conditions are fulfilled: 

for any two instants Ci, t2 (ti < ts) the inequalities 

Pi (1; t, 6) = ( 

H,h9, El = x [I?, 

where X [6; El is the fundamental matrix of system (l.l), are valid for any vector 

I (1 E R", Z # 0) . 
Definition 1. 2, The smallest value of parameter 6 for which the inclusion 

p E w (t, 6) holds is called the absorption instant 6” = 6” (t, p) corresponding to 

the position (t, p,) . 

This definition is well-posed in the sense that the existence of the smallest instant 

6” satisfying the inclusion follows from the existence of instants ti satisfying the inclu- 

sion p E 1%’ (t, 6) and from the continuous dependence of the vector-valued function 

f (1; t, fi) on the collection I, t, fi . 
We accept the following conditions as fulfilled. 

Condition I. 1. There exists an absorption instant 0” == t? (t,,, PO) > to 
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corresponding to the game’s initial position (t,,, pO) . 
Condition 1. 2. The absorntion is strongly u-stable, i. e., for any point p (p E 

E w (t, 6”) ) and any program t,~ (E) (t < E < t f A) admissible for p, we can 
find a program control u (g) (t < E < t + A) such that the pair (U (E), u (E)) trans- 
fers the motion corresponding to system (l.l), (1.3) from the position p = p It] to a 
certain state p It + Al such that p It + AI EW (t + A,@‘).This condition must 

be fulfilled for all t, A, where t, < t < 6” (0 < A ,( 6” - t). 

2. We state certain properties of the sets w (t, I?‘), following from Conditions 1.1, 
1.2 and from Definition 1.2. 

Property 2.1. The set W (t, So) is nonempty, convex and closed for any 

t (t, s t sg SO). 
Property 2. 2. The equality W (So, 6’) = M* is valid. The set w (t, 0’) is 

unbounded. For what is to follow we accept to consider those and only those points of 

set W (t, 6’)(and of other auxiliary sets) whose first coordinate is less than or equal to 
some tixed positive number ,u,, . Such an assumption is based on the fact that the first 

coordinate of the motion beinq considered does not increase with time. 

Property 2. 3. For any tE [t,, So) the set W (t, So) depends continuously on 
t with respect to inclusion and is upper-semicontinuous with respect to inclusion from 

theleftinthevariable t atthepoint :-6O.i.e.. if th+@‘, tk<ti’O, pkE 

E W (tb. 6”) and lrm pk I= P*,then p* E 1%’ (I?“, 0’). 
Proof. We first &%der the case t < 6”. As a preliminary we prove the following 

assertion. 

Lemma 2.3.1. For anyE>OWe can find8 f&j \ Osuch that the inclusion TV (l- 

- A: 6”) c W, (t, 6”), where W, (t, 6”)is the e- neighborhood of set JI’ (t, 19“) is true 

for all A (0 < 1 A / < 6 (E)). 
To prove Lemma 2.3.1 we consider the set JV’” (1, 6”) of points P defined by the in- 

equality 
I’ ‘I; t, 6) p - P &t (I) < 0 (0 < w < X) ‘for /I 1 [I = 1 

The assertion 
lim IV” (t, So) = IV (t, B ) 

W--r0 
(2.1) 

is valid. Equality (2.1) follows from the definition of IV” (t, So) and from the constraint 
imposed on the first coordinates of the points of sets. From the assumption made on the 

boundedness of the coordinates of the points P follows the equiboundedness of the sets 
W (t - A, So), where I A 1 \< AO, 0 < A0 < 6” - t. Taking this into account and the 
continuous dependence of the function f (I; t, tit) on the variables 1, t, we get that for an> 
o > 0 we can find 6 (0) > 0 (8 (0) < A,,) such that the inequality 

(j(z;t.6”)-_f(I;t.-A,6”))‘qj,<o for llZIl= 1 

is true for all A (1 A 1 < 6 (a)) and for all q (q F_ TV (t - A, SC)) and, consequently, 
the inclusion W (t - A, 67 c W” (t. So) is true. The validity of Lemma 2.3.1 follows 

from this and from condition (2.1). 
The following assertions are valid: for any E > 0 we can find 6 (E) > 0 ‘such that the 

inclusions 

W(t,tY)cW,(t+A,fV, W (t, So) c W, (t - A, 6”) 

are true for all A (0 Q A < 6 (e)).The proof of these assertions is based on Conditions 



Extremal strategies in differential games 15 

1.1, 1.2, and on the fact that the set W (t, fV) contains an interior point. 

We now consider the case t = 6”. Let us prove the semicontinuity of the set W (t, 

So) for t = 17” as t varies from the left. We take an arbitrary convergent seauence of 

points pk (pk E VT’ (tk, W)), where tb < 19” and tk - a” as k -f 00. The inequality 

- Ph-[Jl (I; tkr 6”) -+ Ykp2 (I; tk’ 6”) - 1’X [SO, $1 lh. <P-w (Q 

is valid for ii 1 11 = 1. Passing to the limit ask -, m, we obtain 

- Z’,‘iz zb f p_M (1) for IIlj = 1 

Hence it follows that 
lim pk. EM* = W (fY, 6”) 

k+m 

We have proven the validity of Property 2.3. 
By e [t, p] we denote the distance from point p to the convex set W (t, 6”) 

i 

x 14 PI for X I4 PI > 0 
E 14 PI = 0 for X [t,p] <O 

x [t, pl = milx,{s’p - p (s; t, 6”)) for II S II = 1 (2.2) 

p (s; t, So) = max, s’w for w E W (t, So), s = {sl, S2, S*) (s* E Rn) 

Property 2.4. The function E = E [t, pl is continuous in the collection {t, p} 
for all p, t, < t sg 19” 

Property 2. 5. If & [t, pl > 0, then the maximum in (2.2) is achieved on a 
single vector s = s (t, p). 

Property i. 6. Let El&, p* 1 > O.Then the vector-valued function S = S (i, p) 

is continuous in {t, p} in the neighborhood of the point (i*, p+). 
The validity of Properties 2.4, 2.6 follows from the continuity of the variation of set 

W (t, 6’) as t varies. The validity of Property 2.5 follows from the condition of con- 
vexity of set W (t, So) in the space Rn+2, 

3. Let us make the preliminary problem statement more precise. 
Definition 3.1. Let (u} be a collection of closed convex sets U of an r-dimen- 

sional vector space. The function I/ = u (t, p), which associates a certain set u from 

{u} with every vector {t, p} is called an admissible control of the first player if: 

1) 0 (t, p) depends upper-semicontinuously relative to inclusion dn the collection 

(t7 P)i 
2) for any 1, < ti’and any bounded closed region D of the set It,,, t,j X (pl > 0, 

Pz 2 u, p31 .**, Pn+2) there exists a summable function B, (t) such that the condi- 

tion: if U E u (t,p),then 11 u I(2 < B, (t), is fulfilled almost everywhere in L) 

3) U (t, p) = 0 forp, < O.Here U (t, p) was fully determined in formal fashion 
in the region where p1 < 0. 

The second player’s admissible control v(t, p) is defined analogously. 
Definition 3. 2. Every absolutely continuous vector-valued function {pla [t], 

p2’ ItI, q ltl) taking at t = t,a specified value (pip [to], pas [t,], q [&,I} = 
= {pal,,, ~‘20, qO> and satisfying for almost all t, t,, & t < t,, the condition 

do itlicit = A \tj q [tl + B (t) u ltl - C (t) 2, [tl (3.1) 

dp,%lldt = - 11 ublj”, dpz2 [tlidt = - 11 v it111 2 
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where the summable functions u [t], u [r] satisfy the inclusions 

u [tl E u (t, p [tl), 2’ [tl E I/ (t, p bl) 
p it1 = @ [tl, v ltl, 3 ItI: LY {PI [tl, pz bl, q ltl} 

is called a solution of system (1. l), (1.3), generated by the pair of admissible controls 

u (t. p), v (t, p) on the interval [t,, t,] (tt <So) . 
Since the solution of system (l.l), (1.3), generated by a pair of admissible strategies 

u (r, p), v (t, n), has been defined on any interval [t,, t,] (tr < 19’)~ it can be fully 
determined with respect to.continuity at the point 6”. The existence of a solution and 
its continuability to the interval [t,, 6”l follow from the results in p] (see Theorems 

3, 4). Thus, we have defined a solution of system (1. l), (1.3) on the interval [to, 6”] 
generated by a pair of admissible strategies U (t, p), v (t, p). 

The pro b le m. Construct an admissible control U= l,7, (t, p) such that for any 
solution of system (3.1). generated by the pair u = u, (t, p) and V = V (t, p) (here 
V (t, p) is an arbitrary admissible control), the condition p [tl E ?C’I*must be realized 
no later than at some finite instant t = 6”. 

4. We define U, (t, p) f or instants t < 6” in the following way: 

u, (t, P) = 
B’ (t) s* (t, P) 

0 ttr P) P17 if x I4 PI > 0, PI>O 

U,(t, p) = 0, if x It, p] > Oandpt Go or x It, PI <O 

Here. CO denotes the closed convex hull, Q is the union of the set of vectors s (t, p) 
satisfying condition (2.2) with the O- vector of space R’. The following assertion is 

valid: the’ vector s (t, p) satisfying condition (2.2) is such that st (t.p) ( 0 in case 

t<w. 
From Property 2.6 and the inequality st (t, p) < 0 (t < so) it follows that the set 

U, (t, p) is upper-semicontinuous relative to inclusion for a variation of position (t,p) 
and also the set lJe (t,p) is equibounded on any compact set D from the set [to, t,] X 

XR nfs where t, is an’arbitrary number satisfying the inequality t, < 6”. Furthermore, 

U, (t, p) = 0 forp, < O.Hence it follows that U,(t, p) is an admissible control 
in the class of feedback controls lJ (t, p) . 

Theorem 4.1. Suppose that Conditions 1.1, 1.2 are satisfied for the position 

(to, pa) then the control U, (t, p) guarantees that the system (1. l), (1.3) is led from 
the initial state p. = p [toI onto the set M* at no later than the instant “8’. 

Proof. Let us investigate the variation of the quantity s It, P ]I]r’ ,\,I on the interval 

1to, SOJ ; here p [t] is the motion generated by the control UC, (t, p) ik conjunction with 
an arbitrary admissible V (t, p). We show that s [t, p [tlr-,,\.l = U on [to, B]for any 6 < 
< 6”. We assume the contrary: there exists the second player’s admissible strategy v (t, 
p) such that the pair U, (1, p), 1~ (t, p) generates a solution p == p It] on [to, 61,where 

6 < 0” and ue [!I = U, (t, p[l]) E C:, (t, P [tl), ~1 ItI E V (t,p 1~1) are such that E It, P 

[t], u ]+ 0 on It,,, b].Hence it follows that there exist -G t [to, 61 and A* (.t -+ A.+ < 0) 
suceh’ that the conditions 

p [Tl 2L’e, 6 E It” (1, e”), p [t + Alue,D E W (T + A, 6”) 
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are fulfilled for any A (0 < A f A*) . Here the symbol W‘ (t, 0”)denotes the boundary 
of the set FY (T, 8”) in the space R n+2 The following assertion is valid. . 

Lemma 4.1.1. We can find AI, (0 < A, <A*) and K (0 < lir < x) such that the 

inequality 
I+& t+i 

zI (A) < K (12 (A) + A), II (A) = $ Ij “A (E,) /I3 dE, I?@) = 1’ 11 ZJ IfsI i/‘dE 
1 

is valid for any t E (z, z -I- A] and the corresponding point P* (tJuo,c E by’ (t, 6’), for any 

A(()< A <An), and for any ~1~ (E) (t < g < t + A). 
Here, by P* [llue,r we have denoted a point of set Tt” (t, So) nearest to the point 

P M$,v* KecaIl also that the symbol ~6~ (&) (t < $ < t + A)denotes a control which in 

pair with ~;lEl (t .S E G t + A) satisfies Condition 1.2. 

The proof of Lemma 4.1.1 relies on the construction of sets VV (t + A, 6”) (0 < A < 
< A*) and on Conditions 1.1, 1.2. and is carried out by contradiction. We make use 
of Lemma 4.1.1 to estimate the quantity 9 [t + A, p [t + A]26e,U]at the points 

t E i? 7 -i- A,1 (0 < A < A,). 

We first make some auxiliary estimates. The equality 

II P*4t + Al, 3, 
2, _ P [t --i_ n+. 111 = / Pl* [t -t- q.l,iA - PI Et + b3. I ‘-F_ 

-+ i~~*[i+A1~-plIt+AJ”i’ ~ll~*i~+Al~~,,t---~~+Al~~~,~~~12 

is valid, Here p [t-t AJt,& r (p* [t + A] cL2 z, 1 is the state at instant t + A of the motion 
of (1. l), (1.3) with the initial condition ;b ilJu e ,V 0% ftlrre,“) ,generated by the pair t15 (E;), 
v [EJ (1 <F, < t + A). The following assertions are valid: there exist h,, A,, h, (0 < 

< X,, h,, ha < X) such that the inequalities 

/ pl* it + A!v - ,D: it + “1, I? = j (p,i [f] - 15 (A))‘i2 - (PL IlJ” - I? (A))“” J < 

< j pz* [t] -p~[t] I’rxi)hdz(A) (4.3) 

ll~*[t-t~l,~,,,,-~~~+~lu,~~ll~~ll’/~I~l-4~~lIl~~~~~~~~ (4.4) 

1 PI* I I + A Iv p - ~1 [t -t ALA 1 2 < /PI* [t] - PI [t] lZexp b(I, (A) 4-A) (4.5) 

are fulfilled for any t E [.c, t + A,1 and A (0 < A XC A,,). The validity of the next 
lemma follows from relations (4.2) - (4.5). 

Lemma 4.1.2, There exists h ((1 < h < m ) such that the inequality 

II P* It 4 .NUA ,c -P It + AIQ ,” J;! G JJp* [t] - P [LI 11% exp h (11 (A) + A) 

is valid for any t E [z, 7 + &I, for any A (0 < A < AO),and for any ub (5) (t < E < 

<t+ A). 
We separate the interval [z, r + A,J into two nonintersecting sets or and M2. Here 

MI is the set of points t such that there exists a number L = L (t) (0 < L< X) and a 
sequence {A,; An > 0, A,, -+ 0 as n --f M) such that the inequality 

+-12(An)<L (4.6) 
n 

is true, and M, is the set of points t such that the equatitv 

Km + 12 (A) = w 
s+J 

(4.7) 
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is valid. The relation 

e[t+A, PIt+Alue,’ I-&[[+A, P[~+AI~uJ< (4.8) 

~,~‘(~+A,P[~+AIU,,,)(P[~+AI,,~,L. -~[l+Al,,~ 1.) 

isvalidincasetEMi.Here s(r+A, P[‘i-Al~~,c )-i~i(r+ALt P[t+Al,, Jr - 

~2 (r + A, P [l+ Al,e,u), A* (t + A, p [l+ A]u,,u)} is a unit vector of space &, satisfy- 

ing the condition (see Sect. 2) 

s’(t+A, ~[t+Al, ,)p[t+Al, ~-~(s(t+A,~[t+AllL~,,.); r+A,o’)= 
e, 

=x [r PA, P !t + Al,,,~l 

From the continuity of the vector-valued functions S* (t+ A,p [t + Altie,,) ands, (1 + 

+ A, p [t f AIUe,~)in A at the point A = 0, the continuity of the function u, (E, p [&I) 

with respect to position at the point (t, P [rl,e,D) , and the continuity of matrix B (5) : 
it follows that the right-hand side of inequality (4. 8) equals the expression 

Here and subsequently, o, ol, o2 are quantities infinitesimal in comparison with the 

quantities standing alongside in the braces. 

From inequality (4.5) and Lemma 4.1.1 it follows that when A = A,, expression (4.9) 

equals 
!+A, 

&I) 11 (f) bp [II - UAn (5)) + 
(4.10’ 

From the definition of the control I:, (1, P)it follows that the integrand in (4.10) is non- 

positive. Then, by virtue of (4.8), (4.9). we obtain the estimate 

?[/+A ?), P It-t A,, 1,c8,t, 1 - f I’ !- A,, , 11 It -I- A,, lu 3 ul ,<I) (AJ 
n 

Here c (A,) is an infinitesimal depending on t. From this inequality and from Lemma 

4.1.2 it follows that in case t E M, we can find 1 (0 < h < W) and a sequence 

(A,} (An > 0, An - 0 as n - W) such that the inequality 

e2 I’ + An, P 11 + A,l l~,,~l < e2 It, P I%re,vl exp h (I> (A,) + A=) 

is true. 

In case t C+ M, the inequality 

is Due for all sufficiently small A > 0 . The proof of this assertion relies essentially 

on the limit relation (4.7) as well as on the boundedness of the control uy [El (1 < E < 

< t i- 11~1). The validity of the next lemma follows from everything we have said. 

Lemma 4. 1. 3. The inequality 
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&2 [T +Ao, P[Z+ A~lue,,~l GE’ it*, P [~*ll~e,rlexP (Al) 

‘+A0 
I= 

,I 
’ ~~vIElll!dE+(z+A~--t,) 

I* 

is true for any point t, E (.t, 7 + AO]. 
The validity of the equality E[T + A,,, p [t + Ao]ue:t. = 0 follows from Lemma 4.1.3, 

which contradicts the assumption made earlier. 

The case pl. [%I # 0, pzl [T] + 0 was considered above. Let us consider the rest of the 
possible cases. When plr [zl = 0, the validity of Theorem 4.1 is proved by contradict- 

ion. In case pzt [tl = 0 we can prove the validity of the assertion: we can find K (0 < 
< K < cm) and A, (0 < A0 < A*) such that the inequality II (A) < KA is true for any 
t E (7, T f AnI and the corresponding point P. [tl,e,u E W’ (t, @‘) and for any Us (E) 

(t < E < t + A, 0 < A < A,). 
From this assertion follows the inequality 

for any t, E (T, 7 + Ao], where h is some number (0 < I < .x). Hence follows the 

equality 8 1~ + &, P lz f Aol,,,.c ] = 0, contradicting condition 4.1. Theorem 4.1 is 

proved. 
The author thanks N. N, Krasovskii for posing the problem and for valuable advice. 
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